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ABSTRACT
The exploitation of resources, if not properly managed, can lead to spoiling 
natural habitats as well as to threatening people’s health, livelihoods and 
security. The paper discusses a multi-scale Earth observation-based approach 
to provide independent information related to exploitation activities of 
natural resources for countries which are experiencing armed conflict. The 
analyses are based on medium to very high spatial resolution optical satellite 
data. Object-based image analysis is used for information extraction at these 
different scales. On a subnational level, conflict-related land cover changes 
as an indication of potential hot spots for exploitation activities are classified. 
The regional assessment provides information about potential activity areas 
of resource exploitation, whereas on a local scale, a site-specific assessment 
of exploitation areas is performed. The study demonstrates the potential of 
remote sensing for supporting the monitoring and documentation of natural 
resource exploitation in conflict regions.

Introduction

Environment and natural resources can play a significant role in the onset, duration and termination 
of conflicts. A well-known example is the Democratic Republic of the Congo (DRC), where ongoing 
armed conflicts are fuelled by the exploitation of natural resources such as timber, gold, diamonds and 
other minerals (Global Witness 2004, 2005, 2013; Bonn International Center for Conversion 2007; De 
Koning 2008, 2009, 2011; Spittaels & Hilgert 2008, 2009; UNEP 2009, 2015; International Alert 2010; 
United States Agency for International Development 2010; Burnley 2011; Melvin & de Koning 2011; 
Mildner et al. 2011; Cuvelier et al. 2013; Johnson 2013). Informal, illicit or illegal resource extraction 
is often accompanied by military or militia control of extraction sites, as well as highly unsustaina-
ble practices leading to large-scale environmental degradation and livelihood insecurities, e.g. using 
mercury or cyanide for gold extraction or forest destruction during selective logging. Environmental 
factors – in combination with socio-economic effects – can play a key role in the dynamics of conflicts. 
Although the interdependencies are highly complex, one can generally state that in areas with high 
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value mineral resources and poor economic conditions, violent conflict situations can be sustained 
or even initiated (Global Witness 2009).

The lack of precise and reliable situational information is a critical issue in the prevention of, and 
response to, ongoing crisis situations relating to natural resource exploitation. Furthermore, conflict 
situations often hinder non-governmental organizations (NGOs), research teams and others from 
monitoring and observing such regions, as it is the case in the eastern DRC. In many cases in DRC, 
mining areas are very difficult to access because of the extremely bad conditions of infrastructure, 
the risk of violence by rebel groups and militias, or the denial of access by army units occupying the 
areas concerned. In such a context, Earth observation (EO)-based analyses can provide important 
information to complement field-based monitoring studies (Wirkus & Vollmer 2008; Zingg Wimmer 
& Hilgert 2011).

It is the overall objective of the research presented to assess the possibilities and limitations of EO 
at three different spatial scales for the detection and classification of land cover features related to 
the extraction of natural resources in the DRC. Therefore, a robust, object-based multiscale analysis 
approach, using integrated image processing and spatial analysis methods, was developed. The use of 
EO data aims at supporting political decision-making and at linking peace and conflict research with the 
remote sensing and geospatial community (Schoepfer, Blaes, et al. 2012, Schoepfer, Spröhnle, et al. 2012).

Background

Natural resources and conflict in the DRC

The DRC is one of the richest countries in terms of mineral resources in the world; economically, how-
ever, it is one of the poorest. The DRC has been at the centre of what has been termed Africa’s World 
War, 1998–2003 (Prunier 2008). Despite the signing of a peace accord in 2003, fighting continues in 
the East of the country, and the DRC is still ranked very high on the Foreign Policy Failed State Index 
– 5th in 2015 – (Fund for Peace 2015) and poorly in the UN Human Development Index – 186th 
of 187 in 2014 (United Nations Development Programme 2015). Drivers of the Congo conflicts are, 
among others, poverty, weak state authority, access to land, exploitation of natural resources and the 
widespread availability of arms. Several studies have revealed that the DRC’s natural wealth is fuelling, 
and thus perpetuating the conflict (Global Witness 2004, 2005, 2013; Bonn International Center for 
Conversion 2007; De Koning 2008, 2009, 2011; Spittaels & Hilgert 2008, 2009; UNEP 2009, 2015; 
International Alert 2010; United States Agency for International Development 2010; Burnley 2011; 
Melvin & de Koning 2011; Mildner et al. 2011; Cuvelier et al. 2013; Johnson 2013).

Various armed groups, as well as units of the Congolese army, control and profit from exploitation 
and trade of minerals in eastern DRC, so-called conflict minerals are essential components of com-
mon electronic devices. Therefore, industrial companies buying these ores produced in the DRC and 
adjoining countries of the Great Lakes region have been urged by international NGOs to exercise due 
diligence on their supply chains so as to avoid buying conflict minerals. In the last few years, interna-
tional organizations, such as the International Conference on the Great Lakes Region (ICGLR), the 
United Nations and the Organisation for Economic Co-operation and Development (OECD), and the 
United States with its Dodd-Frank Act, have launched a series of initiatives to combat the international 
trade in ‘conflict minerals’, through certification of minerals, guidelines on due diligence and reporting 
obligations for companies, respectively.

The benefit of Earth observation

In the light of calls for stricter regulation of the mining sector, the mapping and listing of mining sites 
in eastern DRC is one key prerequisite, before systems of control or certification can be implemented. 
Besides its role as a monitoring tool, such mapping can also serve as a measure for policy planning. 
Knowing where the mining takes place and how intensive the activities are can help to determine 
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where conflict prevention measures are mostly required – for example, in redirecting the deployment 
of mining agents or the specific opening or closing of markets.

In 2009, the International Peace Information Service (IPIS), a Belgian research NGO, published 
an ‘Interactive map of militarised mining areas in the Kivus’, as a first systematic attempt to cast light 
onto the circle of profit by armed groups profiting from the extractive industry in the eastern DRC 
(Spittaels & Hilgert 2009). This was followed by an overview on the mineral sector and mapping of 
the mining areas in the regions surrounding the two Kivu provinces – the ‘Kivu hinterlands’ (Spittaels 
2010). During this research, it became clear that mapping and inventorying mining sites in eastern 
DRC is a very complex and dangerous task. Nearly all mining in eastern DRC is done in an artisanal 
way, with very basic tools such as shovels, pickaxes or even by hand. Since artisanal mining is a largely 
poverty-driven activity, it is typically practiced in the poorest and most remote rural areas of a country 
which are often also highly insecure (Garrett 2008; Garrett et al. 2009; De Koning 2011; International 
Peace Information Service 2013). Thus, mineral extraction is carried out by individuals, groups or 
cooperatives under extremely bad conditions and moreover, many mines are very difficult to access. 
As a result, field surveys are cost-intensive or even impossible which brought satellite data analysis 
and semi-automated mapping techniques into the focus of the peace and conflict research community 
(Brown 2010; Kranz et al. 2010; Schoepfer & Kranz 2010; Zingg Wimmer & Hilgert 2011; Schoepfer, 
Blaes, et al. 2012, Schoepfer, Spröhnle, et al. 2012; Lang et al. 2015). The assessment of the situation 
using satellite imagery and the detection of changes through frequent monitoring can provide essential 
information for surveillance and situational awareness over large areas as well as focussed on certain 
regions of interest (Kranz et al. 2015). With respect to this study, mining sites, surrounding settlements 
and infrastructural facilities are of interest. The overall aim is the support of awareness raising and 
on the long run, a sustainable use of natural resources as a major prerequisite of conflict prevention 
policies (Zingg Wimmer & Hilgert 2011; UNEP 2015).

Study area and data sets

The DRC is one of the most mineral-rich countries in the world. The exploitation of minerals is a 
major factor in the economy of the conflict-torn East of the country, in particular in the provinces of 
North and South Kivu.

Different test areas were selected at three different scales within the eastern DRC. The subnational 
scale (1) focuses on the whole region of North and South Kivu provinces, whereas several smaller 
study sites were identified within these regions for studying both the regional (2) and the local scales 
(3) of the mining activities (see Figure 1). These areas differ in landscape and topographic character-
istics, showing hilly terrain with a small-scale mixture of meadows, fields and forests or large-scale 
rain forests interrupted by secondary forests and fields along villages. This variety allows developing 
and testing of robust and transferable analysis approaches as described in the methodology chapter.

Optical data from different satellite missions with different spatial resolution were acquired (see 
Table 1). For the subnational analysis in the North and South Kivu provinces, 14 Landsat-5 scenes 
from the years 2002, 2003, 2009 and 2010 as well as six UK-DMC2 images from 2008, 2009 and 2010 
were collected, all with a medium spatial resolution (MR) of 30 and 22 m, respectively. The regional 
analysis is based on high spatial resolution (HR) RapidEye imagery (6.5 m pixel spacing) acquired 
on 1 October 2010 in the area around S. Masisi. At the local level, four areas of interest, namely Bisie, 
Mumba-Bibatama, Numbi and Tchonka, were analysed on the basis of very high spatial resolution 
(VHR) GeoEye-1 satellite data (0.5 m spatial resolution) acquired on 08 September 2010, 17 August 
2010, 29 January 2010 and 13 May 2010, respectively.

Methodology

The multi-scale image analysis approach is performed at three spatial levels (see Figure 2): (1) sub-
national scale: classification of conflict-related land cover changes as an indication of potential hot 
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spots for exploitation activities; (2) regional scale: detection of potential activity areas of resource 
exploitation, and (3) local scale: site-specific assessment of exploitation areas. Figure 2 illustrates the 
workflow adopted for the presented study.

Image pre-processing

Pre-processing steps applied to the satellite imagery on the subnational scale included mosaicking, 
orthorectification and calibration to top of atmosphere. Additionally, a topographic correction was 
applied to eliminate the effects of variable illumination due to relief influences (Riano et al. 2003; 
Richter et al. 2009). In order to tackle the cloud coverage issue, which is common for the use of optical 
images in equatorial areas, the Landsat-5 scenes were supplemented by UK-DMC2 imagery. Firstly, 
the UK-DMC2 images were resampled to 30 m to match the Landsat spatial resolution. Secondly, 
the gaps which resulted from masking out the cloudy areas were filled with the spectral information 

Figure 1. Study areas in the east of the Democratic republic of the congo.
notes: north and South Kivu provinces are subject for analysis on a subnational scale, whereas the large and small squares highlight the sites related 
to regional and local analysis, respectively.
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derived from the UK-DMC2 scenes. Concerning the regional and local scale, image pre-processing 
included orthorectification as well as atmospheric and topographic correction (Richter 1996; Krauß 
2014). An additional pre-processing step was performed on the multispectral GeoEye-1 images at 
local scale which were pan-sharpened to a spatial resolution of 0.5 m.

Image analysis approach

For the integrated analysis of the satellite imagery on all scales, an object-based image analysis (OBIA) 
approach (Blaschke & Strobl 2001; Schoepfer et al. 2009; Blaschke 2010), utilising the Cognition 
Network Language (CNL) in eCognition 8, was applied (Baatz et al. 2008). CNL is a scripting language 
which is designed to develop application-specific solutions. In an iterative approach, both specific 
object segmentation and feature extraction are optimised in order to create flexible and robust algo-
rithms, which may be transferred to other images with no or only minor adjustments of parameters 
(Schoepfer et al. 2009). Image segmentation is mainly based on multiresolution segmentation as 
defined in Baatz and Schäpe (2000). Additionally, further segmentation techniques including spectral 
difference, contrast split, quadtree and chessboard segmentation were used. The classification process 
is based on the definition of features using spectral, contextual, geometrical and hierarchical object 
characteristics. An overview of the applied segmentation and classification parameters for the three 
analysis levels is given in Table 2.

Table 1. overview of satellite data specifications and image pre-processing steps.

aearth observation data provided by the eSa managed GSc-Da, funded under eSa – ec agreement on the Implementation of the 
Space component of Global Monitoring for environment and Security (GMeS).

analysis scale
area of 
interest

coverage 
(km²) Sensor

Spatial  
resolution (m)

acquisition 
date

pre-processing 
steps

Subnational north & South 
Kivu

125.000 landsat-5 30 08/03/2002 orthorectification
31/01/2003 Mosaicking
07/02/2003 re-sampling  

(DMc only)
26/01/2009 top of atmosphere 
07/06/2009 correction
16/06/2009 topographic 

correction
18/07/2009
26/01/2010
11/02/2010
03/12/2010
19/12/2010

UK-DMc2a 30 14/12/2008
20/12/2009
24/06/2010
17/08/2010
03/11/2010
06/11/2010

regional S. Masisi 5.000 rapideyea 6.5 01/10/2010 orthorectification
atmospheric 

correction
topographic 

correction
local Bisie 100 Geoeye-1a 0.5 08/09/2010 orthorectification

Mumba- 
Bibatama

17/08/2010 atmospheric 
correction

numbi 29/01/2010 topographic 
correction 

tchonka 13/05/2010 Pan-sharpening 
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The advantage of the overall OBIA approach is the availability of information beyond the spectral 
image properties, the integration of expert knowledge in the extraction cycle and the transferability 
of the algorithm to other areas of interest. This allows for a straightforward, time-saving and more 
consistent analysis of different test areas and facilitates the monitoring of specific sites over longer 
time periods.

Subnational level – mapping conflict-related land cover changes

The aim of the analysis at subnational level was to provide status quo and change information on 
land cover for regions, where natural resources play a significant role in the context of the conflict 
situation. Such information consists in the depletion of primary natural land resources, i.e. changes 
in agricultural land and forest cover indicating activities that potentially fuel the conflict (e.g. illicit 
mining or informal logging). The information is derived from multi-temporal MR satellite data aimed 
at identifying possible hot spots, i.e. flash points for crisis within a country.

In a first stage, core environmental information was produced by the classification of land cover in 
the North and South Kivu provinces for 2010. The class definition is based on the land cover nomen-
clature developed in the context of the Africover project (Africover 2013). The FAO/UNEP Land 
Cover Classification System had been adopted by former land cover studies at national level in the 
DRC (Di Gregorio & Jansen 1996; Vancutsem et al. 2004). Relying on these data sets assures that all 
major land cover classes are taken into account and guarantees comparability between the data sets. 
The classification workflow starts with a multi-scale segmentation of the landscape elements based 
on the source imagery resulting in homogenous objects. Segmentation parameters were determined 
iteratively and empirically taking into account the broad range of differently sized landscape elements 

Figure 2. Workflow of multi-scale top-down approach to provide conflict-related and environmental information and to assess 
resource exploitation sites.
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occurring in the area. Secondly, a rule-based classification considering spectral, textural and contex-
tual signatures followed in order to label these objects with meaningful classes. Detailed information 
on applied segmentation techniques and classification features is given in Table 2. The classification 
rule set defined in CNL allowed the definition of multiple spectral indices such as band ratios and 
normalised vegetation indices (VIs). The selection of suitable combinations of input indices defining 
applicable class signatures was undertaken by an iterative evaluation of the feature space. The feature 
space was built for the typical representatives of each land cover class. The most appropriate combi-
nation of defined features identified during this step was applied for the class assignment with further 
re-evaluation with respect to observed errors or misclassifications. For the selection variations and 

Table 2. overview of main segmentation and classification parameters focused on features of interest.

analysis scale Segmentation
classification 
parameters refinement class

Subnational contrast split: 0–255 Spectral information: 
blue, nIr, SWIr, 
Standard deviation 
(nIr, SWIr); 

Object reshaping: 
Pixel-based object 
resizing, Merge 
region

clouds (incl. cloud 
shadow)Stepping type: add, 

stepping size: +2

Class-related features: 
Distance to, rel. 
border, enclosed by

Geometry: area
Quadtree: scale 

40;Multiresolution: 
scale parameter 
20 (shape 0.3, 
compactness 0.5)

Spectral information: all 
image bands, nDVI, 
modified eVI, ISo-
data clustering; 

Object reshaping: 
Morphology 
operations (opening, 
closing), Merge 
region, remove 
objects

Shrubland, shrub 
crop, herbaceous 
grassland, 
herbaceous crop, 
built-up, bare areasClass-related features: 

rel. border to
Geometry: area 

Quadtree: scale 60; 
Quadtree: scale 10

Spectral information: 
all image bands, 
Standard deviation, 
FI, Brightness, nDVI 

Object reshaping: 
Morphology 
operations (opening, 
closing), Merge 
region, remove 
objects

Primary forest, 
woodland and 
mountain forestMultiresolution: scale 

parameter 20 (shape 
0.3, compactness 
0.5)

Class-related features: 
rel. border to

Geometry: area 
Multiresolution 

segmentation: scale 
parameter 20 (shape 
0.3, compactness 
0.5)

Spectral information: 
all image bands, nIr, 
nDVI, Brightness, 
Standard deviation 
(blue, nIr); 

Object reshaping: 
Pixel-based object 
resizing, Merge 
region, remove 
objects

Water

Class-related features: 
Distance to, rel. 
border to

Geometry: area, Shape 
index

regional Multiresolution: scale 
parameter 80 (shape 
0.1, compactness 
0.5); chessboard: 
object size 166

Spectral information: 
nDVI, Brightness, 
Standard deviation 
(green); Class-related 
features: Distance 
to, relative border 
to, existence of; 
Geometry: area

Object reshaping: 
Merge region

Bare soil

local Multiresolution: scale 
parameter 25 (shape 
0.1, compactness 
0.5); Spectral 
difference: Max. 
spectral difference 
10

Spectral information: 
nDVI, MSaVI2, 
BSI, Standard 
deviation (green 
band); Geometry: 
compactness, area

Object reshaping (pixel 
and object-based): 
Pixel-based growing 
and shrinking, 
Merge region; 
Neighbourhood 
relations: relative 
border to

Mining sites
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local specifics in the class signatures occurring in the study area were taken into account based on site 
specific conditions for each image, i.e. acquisition date and corresponding phenological conditions as 
well as defined biogeographical regions (derived from the land cover nomenclature developed in the 
context of the Africover project (2013) and ancillary data).

Due to the high volume of data, a sequential processing was chosen. The developed rule set was 
applied to single Landsat scenes which were clipped at the average cutline of the overlapping area 
of the adjacent images. The individual classifications were merged to produce a seamless land cover 
result. Due to the changing presence of clouds in neighbouring scenes, mismatching of cloud objects 
occurred at the border. These artefacts were removed by post-classification contextual matching, which 
corrected class discrepancies based on the application of a defined majority criteria. In the following 
step, a minimal mapping unit of five hectare was defined and applied. Finally, the mosaicked land cover 
classification output was thoroughly checked by means of expert knowledge and visual interpretation 
in order to reveal and to manually correct any further misclassifications.

In a second step, the changes in land cover were assessed exemplarily for North Kivu for two 
periods: (1) from 2003 to 2008 and (2) from 2008 to 2010. Changes were detected on the basis of 
image-to-image comparisons of Normalised Difference Vegetation Index (NDVI, cf. Rouse et al. 1973) 
differences between image pairs of Landsat-5 and UK-DMC2 scenes from the respective years. The 
NDVI shows the growth of green vegetation and is calculated by

 

where ρNIR is the spectral reflectance in the near infrared channel and ρRED is the spectral reflectance 
in the red channel. Firstly, each image pair was histogram-matched, and secondly, the NDVI differ-
ence providing the change intensity was calculated. The scaled change intensities were subsequently 
thresholded to form discrete polygons and matched to fit the land cover segments. Global thresholds 
based on the histogram of the change intensity were applied in a first step. In a second step, the out-
put was visually checked. In case of significant discrepancy between the automated results and the 
changes derived from visible inspection of the pair of images, the threshold was locally adjusted. The 
description of the changes was derived from the classification rule set and schema of the land cover 
map. Consequently, the object-based classification was carried out for segments coincident with pre-
viously detected changes.

In a last step, the detected change polygons were spatially aggregated into regular 1 km × 1 km grid 
cells. Grid cell-based representation of change data is particularly useful for the analysis of clusters of 
similar changes and the identification of hot spots, and to eliminate noise. It facilitates the comparison 
of different classes at the same spatial level and provides a better overview of changes of landscape 
structure and trends in the analysed area (Tiede et al. 2012).

Regional level – detection of potential resource exploitation

The main objective of the analysis at regional scale was the development of a fast approach for detecting 
potential resource exploitation. In this study, focus was set on the detection of mineral exploitation 
sites. The applied approach, both for the regional and for the subsequent local scale, builds upon 
preceding work from Schoepfer and Kranz (2010) and Luethje et al. (2014). The presented research 
focuses on the development of enhanced concepts through the investigation of additional data sets 
and improved analysis methods.

Particular attention was paid to the generation of a cloud and cloud shadow mask in order to avoid 
confusion with features of interest. As described in Schoepfer and Kranz (2010), several iterative steps 
were applied ranging from different segmentation techniques such as edge ratio split, contrast split and 
spectral difference to spectral-based classification and pixel-based reshaping. In order not to interfere 
with the desired features of interest, further pre-classification of objects was performed including 
the extraction of water bodies and settlement areas using both spectral and spatial interlinked object 

(1)NDVI =
�
NIR

− �
RED

�
NIR

+ �
RED
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features. Again, pixel-based object growth and resizing proved to be successful in creating real-world 
objects. In the main classification process, the bare soil areas – which are of main interest – were ana-
lysed. Objects were generated using the multiresolution segmentation algorithm. In an initial step, 
objects were assigned by the definition of two features, namely the Normalised Difference Vegetation 
Index (NDVI) (see (1)) and the standard deviation of the green band. The identified bare soil areas 
were further classified to detect potential hot spots of natural resource exploitation related to mining 
of minerals using the NDVI and the overall brightness. Additionally, relations to neighbour objects 
and geometric measures were included to fine-tune the classification results.

In order to focus on the area around the detected potential hot spot, a regular gridded layer of 
1 km × 1 km was introduced in order to spatially aggregate the information and to highlight cells of 
interest (Schoepfer et al. 2007). This step was realised by segmenting the overall image with a chess-
board segmentation. A buffer was calculated around the identified potential mining areas in order to 
enlarge the detected area of interest. In the following, the number of detected features within a cell 
was summed up indicating the most relevant areas.

Local level – site-specific assessment of exploitation area

For the local analysis, four 10 km × 10 km study sites were determined according to the information 
provided by IPIS. This information was further supported by the results of the regional analysis. Two 
of the four study sites are located within the area of the regional analysis which shows the highest 
concentration of detected potential mining areas. Similar to the subnational and regional approach, 
the local analysis was conducted using an object-based environment. Since mining sites differ signif-
icantly in their structural characteristics, it is important that the feature extraction process provides 
the flexibility of tuning the behaviour of segmentation and classification straightforwardly.

The initial rule set was developed for Mumba-Bibatama in North Kivu based on GeoEye-1 imagery 
from 17 August 2010. Initial object generation was achieved by applying a region-based, local mutual 
best fitting segmentation approach (Baatz & Schäpe 2000). The threshold for the segmentation param-
eters was iteratively evaluated based on visual inspection and adjusted accordingly. Since mining 
sites considerably differ regarding their shape, but are characterised by similar spectral information, 
the colour criterion was preferred to shape. The image objects were refined by applying a spectral 
difference segmentation, which aggregates adjacent image objects with similar spectral responses up 
to the maximum spectral difference. Neighbouring image objects with similar spectral properties are 
merged while spectrally distinct objects are preserved. This allows the creation of real-world objects 
and the integration of meaningful feature descriptions such as geometry characteristics in the following 
classification process. In case of both of the before mentioned segmentations, all image layers were 
equally weighted. The resulting image objects are used for further classification and class refinement 
procedures. The most obvious characteristic of mining areas is the loss of vegetation cover resulting 
from mining activities. Thus, the rule-based classification process starts with the separation of vegetated 
and non-vegetated areas. In a first step, the NDVI (see (1)) was employed to detect vegetation covered 
areas. For a better separation between remaining scarcely vegetated areas and non-vegetated areas, 
the Modified Soil Adjusted Vegetation Index 2 (MSAVI2) was introduced. This index is computed as 
follows (Qi et al. 1994):

 

where ρRED and ρNIR are reflectances in the red channel and in the near infrared channel, respectively. 
The MSAVI2 is a more sensitive indicator for vegetation density, because it raises the vegetation signal 
and simultaneously lowers soil-inducted variations. Finally, the Bare Soil Index (BI) (Azizi et al. 2008) 
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was used to improve the extraction capacities of the developed rule set. The BI is calculated by using 
the following equation (Azizi et al. 2008):
 

where ρGREEN, ρRED and ρNIR are reflectances in the green, red and near infrared channel, respectively. 
In addition, the standard deviation of the green spectral band was used in order to reduce misclas-
sifications such as uncultivated agricultural fields which have also been identified using the various 
indices. Mining areas are more heterogeneous in comparison with uncultivated agricultural fields, 
and thus show a higher standard deviation of the reflection values in the different spectral bands. Also 
geometrical features like the compactness (C) and size of the classified objects after merging proved 
useful to eliminate misclassified objects. (C) is calculated as follows (eCognition Developer 9 2014):
 

with lo representing the length and wo the width of an image object; Po is the total number of pixels 
of an image object.

Following the iterative approach, previously applied features such as the standard deviation of 
the green band and geometric features were used to further optimize the feature extraction result. 
Finally, for further class refinement, advanced classification and object reshaping algorithms were 
applied including pixel-based object resizing (growing and shrinking) and object assignment based 
on neighbourhood relations.

In the following, the transferability of the rule set was tested on further areas of interest, namely 
Bisie, Numbi and Tchonka, showing diverse landscape characteristics. Despite these differences, only 
minor adaptations with respect to the definition of spectral thresholds had to be applied. This reduced 
significantly the time required to analyse the new images as the main rule set could have been applied, 
and thus, fundamentally new programming of individual rule sets was avoided.

Accuracy assessment

For the validation of the land cover classification on the subnational level, a twofold approach was 
selected. Firstly, standard procedures and metrics used for quantitative assessment of thematic accu-
racy of remote sensing data products were applied (Congalton 1991). Secondly, an in situ verification 
performed in the field by local experts was performed.

Thematic consistency validation of the land cover classification from 2010 was accomplished by 
interpreting VHR satellite imagery. A set of 350 randomly distributed validation points was generated 
within the areas covered by the VHR images in both Kivu provinces. By visually analyzing and inter-
preting the VHR images, the landscape in the surroundings of each validation point was characterized 
within a radius of 300 m. This approach allowed the correct labelling of the complex land use classes 
composed from several subclasses, using the criterion of predominance for the categorization. The 
use of a buffer with a size equal to the radius of the validation circle ensured that no class boundary 
crossed the sample circle.

In a second step, in situ field data were collected to verify the land cover classification. Five local 
and international NGOs contributed to this in situ validation. The advantage of working with local 
institutions is that they have many staff in the field that have a deep knowledge of the region and situ-
ation in those remote areas. The drawback is their limited experience in map reading and the lack of 
informatics infrastructure. Taking these peculiarities into account, a dedicated verification protocol 
was set up and about 650 A4 paper maps were prepared to cover the daily working area of the involved 
NGOs and institutions. A set of 15 points per map randomly selected on a regular grid (1 km spacing) 
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was proposed for the verification. The field operators were asked to mark the correct land cover at the 
point locations only if they reliably knew the region. Thus, not all 15 points per map may have been 
necessarily verified. With this verification set-up, about a third of the surface of the North and South 
Kivu provinces was observed by the field operators. In total, 1638 points were received from the field 
operators, of which only 1555 were considered as reliable. Due to the absence of applicable reference 
or in situ data, the land cover change could only be verified by visual inspection using the original 
satellite imagery. Potential omissions and commissions in the results were systematically inspected by 
the interpretation of the full bandwidth of the spectral information, i.e. various band combinations, 
NDVI and principal component analysis.

Mining positions identified at regional and local scale were compared with Global Positioning 
System (GPS) measurements made by field staff. In the area of S. Masisi on the regional scale, 35 GPS 
points were available, whereas for the validation of the local analysis, one to eight measurements per 
area existed (Spittaels & Hilgert 2009). However, regarding the validation of satellite data interpretation 
results using the GPS measurements, some important constraints have to be considered. Since the 
GPS measurements were actually not conducted for the validation of the analysis results, but for other 
reasons, no attention was paid to take one GPS point for each mining site. The field staff was rather 
instructed to localise one central point if there were several sites close to each other. Furthermore, 
due to security reasons, the measurements were not always taken in the mining area itself but in a 
safe distance. As a consequence, the GPS location of mining areas may slightly differ from those 
derived by semi-automatic image analysis although both refer to the same area. Consequently, it is 
not possible to validate the identified mining areas by a comparison with the exact position of GPS 
points but rather by their distance from it. Thus, for the validation of the local analysis, a buffer of a 
500 m radius around the GPS points was generated. The size of the buffer was chosen based on the 
information provided by IPIS. In the case of the regional analysis, the number of GPS points within 
the aggregated grid cells covering a 3 × 3 neighbourhood window was analysed.

Results

Subnational analysis

The land cover map of 2010 for the North and South Kivu provinces consists of ten classes: clouds, 
primary forest, woodland and mountain forest, shrubland, shrub crop, herbaceous grassland, herba-
ceous crop, built-up and bare areas (see Figure 3).

The in situ expert-based assessment resulted in an overall accuracy of 94%, while the classical 
approach of visual comparison with higher resolution data estimated an accuracy of 79% (see Tables 
3 and 4). The figures for individual classes show different user’s and producer’s accuracies. The shrub 
crop mosaic and herbaceous crops reached high accuracy figures due to its mixed definition, which 
played a significant role for the class interpretation in complex landscape areas. Classes with a more 
distinct definition such as shrubland resulted in lower accuracy figures. This was caused by the fact 
that boundaries between these classes are fuzzy and gradual, which affects mutual separability of the 
classes and consequently the accuracy of classification. In general, the classes were well discriminated 
and few commission and omission errors were observed.

Apparently the two different validation approaches of the land cover classification led to different 
results in which the in situ validation provided a significantly better assessment. An explanation can 
be that a local expert may tend to accept an assigned class rather than rejecting it. Nevertheless, the 
joint assessment of both visual and in situ assessments provides more credibility to the product rather 
than a single one. The accuracy of the product is satisfactory, taking into account the complexity of 
the landscape and individual classes in the study area.

The land cover changes were observed for North Kivu between 2003 and 2008 as well as between 
2008 and 2010. The detected changes were aggregated into dedicated classes, which are possibly related 
to mining activities or exploitation of natural resources in general, i.e. deforestation and agricultural 
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uptake by natural vegetation. A number of clusters of similar changes were identified from the results 
in the area. It was assumed that clusters of similar changes could indicate potential areas of exploitation 
of natural resources in conflict areas.

Figure 4 shows the change clusters for the two periods in North Kivu: (1) from 2003 to 2008 and 
(2) from 2008 to 2010.

Land cover changes related to deforestation are mainly caused due to population pressure and agri-
cultural expansion which leads to environmental impacts at the edge of forested areas. It could not be 
confirmed that unclustered and scattered deforestation patches are related to natural resource exploita-
tion activities. However, evolution of deforestation size and patterns could be regularly monitored at 
the given scale in order to identify potential hot spots. If suspected, identified spots could be linked 
to with the subsequent regional analysis. Land uptake by urban is also related to population growth in 

Figure 3. land cover classification of north and South Kivu.
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Table 3. confusion matrix obtained using a stratified random sampling design.

notes: overall accuracy: 79.1%; Kappa: 0.79. F: Primary forest; W: Woodland and mountain forest; S: Shrubland; Sc: Shrub crop; HG: 
Herbaceous grassland; Hc: Herbaceous crop; BU: Built-up; Ba: Bare areas.

Table 4. confusion matrix obtained using in situ field data.

notes: overall accuracy: 94.1%; Kappa: 0.925. F: Primary forest; W: Woodland and mountain forest; S: Shrubland; Sc: Shrub crop; HG: 
Herbaceous grassland; Hc: Herbaceous crop; BU: Built-up; Ba: Bare areas.

reference data (VHr satellite data) Total User’s  (%)

classified data F W S Sc HG Hc BU Ba
F 55 9 0 0 0 0 0 0 64 85.9
W 3 28 4 0 1 0 0 1 37 75.7
S 1 5 37 3 7 1 0 0 54 68.5
Sc 0 3 8 49 3 3 0 0 66 74.2
HG 1 3 0 0 36 1 0 0 41 87.8
Hc 0 2 1 8 3 45 0 0 59 76.3
BU 0 0 0 0 0 0 10 0 10 100
Ba 0 0 0 0 0 0 0 9 9 100
total 60 50 50 60 50 50 10 10 340
Producer’s (%) 91.7 56 74 81.7 72 90 100 90

reference data (in-situ field data) Total User’s  (%)

classified data F W S Sc HG Hc BU Ba
F 225 6 10 2 0 1 1 0 245 91.8
W 6 103 3 1 0 0 1 0 114 90.4
S 14 2 206 4 5 1 0 0 232 88.8
Sc 0 0 4 535 14 5 1 1 560 95.5
HG 0 0 0 1 240 3 2 246 97.6
Hc 0 0 2 2 0 118 0 0 122 96.7
BU 0 0 0 0 0 0 36 0 36 100
Ba 0 0 0 0 0 0 0 0 0 -
total 245 111 225 545 259 125 42 3 1555
Producer’s (%) 91.8 92.8 91.6 98.2 92.7 94.4 85.7 0

Figure 4. land cover changes in north Kivu (1) from 2003 to 2008 (left) and (2) from 2008 to 2010 (right).
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the area under investigation, whereas changes in cropland (agricultural uptake by natural vegetation 
and crop-/grassland extension) depend mainly on seasonal cycles related to local agriculture practices.

Both change analysis periods 2003–2008 and 2008–2010 showed effects of fragmentation resulting 
from insufficient cloud-free data coverage. Thus, it has to be noted that some change clusters may 
not be fully detected. Operational large-scale change detection, supporting identification of artisanal 
mining hot spots, requires a monitoring capacity independent of cloud coverage and providing results 
in narrow time windows. This could be accomplished using medium resolution radar satellite imagery 
for change detection. However, for class labelling of detected changes, a combination of radar and 
optical image data is still desirable.

Regional analysis

Figure 5 shows the result of the feature extraction analysis in the area of S. Masisi as raster cells 
underlain by the RapidEye image from 2010. Only 26 of 4364 cells were identified as hot spot areas, 
i.e. potential areas of active natural resource exploitation.

Three different categories of probability areas (low, medium and high) were defined according to 
the number of identified features per grid cell. Red colour indicates areas with a high probability of 
potential mining areas (equal three or more identified potential areas of active exploitation), whereas 
orange cells represent areas with medium (two identified potential areas) and yellow cells areas with 
low probability (one identified potential area). Three cells were marked with a ‘high’ potential of 
mining activity, whereas five cells were marked as ‘medium’ and 18 boxes as ‘low’ probability. A visual 
inspection revealed that in 17 identified cells, potential mining activity exists, whereas 3 cells were 
highlighted due to misclassification of bare ground within built-up areas and 6 cells in agricultural 
areas, respectively. Of the 26 identified cells, 13 cells could be directly linked to field validated and 

Figure 5. Distribution of potential areas of active natural resource exploitation, related to mining of minerals in the region north–
West of lake Kivu.
notes: Darker colour corresponds to areas with a higher probability of potential mining areas, whereas brighter cells represent areas with minor 
probability. the small insets show very high-resolution satellite imagery.
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GPS located mining sites, whereas 4 cells show potential areas which have not been recorded by GPS 
measurements. At this point, it has to be restated that not all mining sites are necessarily covered by 
the field-based assessment due to security reasons or represent new areas which did not exist at the 
time of GPS recording.

Figure 6 shows the delineation of identified objects, both polygons and enlarged buffer zone of 
potential active mining areas in the region of Mumba-Bibatama. The cells are highlighted in three 
different colours, i.e. yellow, orange and red, indicating the probability of mining areas from low 
to high. In addition, the GPS points are included in the figure as triangles. The matching of the 
detected potential mining area objects with the field-assessed GPS measurements is remarkable 
considering the coarse resolution of the image and the corresponding mapping unit of the described 
feature of interest.

For an overall validation, the available 35 GPS points within the RapidEye image were used to 
identify those cells which were missed by the classification system. The evaluation revealed that only 
8 mining areas were not highlighted as potential mining hot spots within the 3 × 3 neighbouring cells. 
The automated process may facilitate the visual screening of large areas in future.

Local analysis

The introduction of indices (NDVI, BI, etc.) in the feature extraction process showed to be effective 
for improving the robustness of the classification. The NDVI clearly differentiated vegetation and 
non-vegetation in a first step of the image analysis. The MSAVI2 and BI indices were almost equally 
effective in separating bare soil and vegetation in the second step and performed well when used in 
parallel. Finally, the standard deviation feature of the image objects as well as the geometry feature 
proved to be powerful separators for mining sites and other bare soil areas. Although the study sites 
are characterised by very different landscape structures, the classification of mining sites for all 
regions of interest showed promising results, underlining the robustness and transferability of the 
applied rule set.

Figure 6. area around Mumba-Bibatama shows cells with high probability of mining areas.
notes: classified potential mining area objects are shown as black polygons, the enlarged buffer zones of potential active mining areas are highlighted 
in white whereas the location of GPS measurements are illustrated as triangles.
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As shown in Figure 7, there is a high consistency between the locations of field validated mining sites 
(red triangles) and satellite inventoried mining sites (orange polygons). Most of the remotely-sensed 
potential mining sites are within a distance of 500 m from the GPS measurements.

An overview of the number of field mapped mining sites with respective GPS locations available 
for each study site in comparison with the analysis results is given in Table 5.

Altogether 14 of 20 GPS located sites have been identified by the analyses of satellite data. The other 
six sites could not be verified by the satellite imagery, even by visual interpretation, for mainly two rea-
sons: (1) small-scale mining areas are not visible due to vegetation or cloud cover, especially in areas of 
primary forest or (2) there is a long interval between GPS recording and satellite data acquisition, and 
thus, mining activities may have already be stopped. Detailed visual inspection showed that false alarms 
for mining sites are mainly caused by similar spectral reflectance of bare ground and dry river beds.

Discussion

The assessment of natural resource exploitation in conflict regions suffers mostly from secure access to 
the area and particularly in DRC from the large areas to be monitored. Satellite remote sensing seems 

Figure 7. overview of semi-automatic image analysis results of the local study sites. the identified mining sites are shown as orange 
polygons; red triangles indicate GPS locations surrounded by a yellow buffer with a 500 m radius: (a) Mumba-Bibatama (2010/08/17), 
(b) numbi (2010/01/29), (c) tchonka (2010/05/13), (d) Bisie (2010/09/08).
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to be an ideal tool to overcome these limitations being able to provide a synoptic overview of large 
areas with the potential to ‘zoom’ into hot spot areas to obtain more detailed information. Hence, this 
paper looks into the multi-scale assessment of resource exploitation.

The coarser resolution assessment on the subnational scale provides with the updated land cover 
classification core environmental information that is lacking for a wide range of applications also 
beyond the conflict resources nexus. The experts performing the in situ verification confirmed that 
such basic thematic information is highly relevant in regions such as Kivu and the DRC in general 
where they suffer from a lack of geographic information. Even basic situation maps are useful for local 
institutions working in the area of regional planning, environmental protection or alike. Here, a major 
limitation of optical satellite data should be mentioned which is its dependence on weather conditions. 
In particular, in tropical regions, cloud coverage could lead to unavailability of proper optical satellite 
imagery over longer periods which might hinder a consistent monitoring. In contrast to optical data, 
synthetic aperture radar (SAR) data are independent from these weather phenomena since the applied 
wavelength is able to ‘look through’ clouds. Although SAR data have some limitations with respect 
to the identification and discrimination of some land cover classes, it might provide an alternative to 
optical imagery in this particular context. With the launch of the first suite of Sentinels, i.e. Sentinel-1 
and Sentinel-2, a frequent global coverage of the Earth surface in full spectrum of remote sensing is 
becoming available free of charge to all users. The combined use of both, SAR and optical systems, 
should boost the sketched methodological approach of classifying conflict-related land cover changes 
as an indication of potential hot spots for exploitation activities.

During the development of a robust algorithm for screening large-scale areas on regional level, 
specific effects were encountered. Those are mainly related to the varying size of the mining areas 
where smaller sites may not be detected due to the coarse resolution of the satellite imagery and the 
limited size of the targeted features, respectively. This drawback, however, can be compensated by 
the fact that mining activities are agglomerated in certain regions, and thus, even if not all sites are 
detected from space, still the main areas of relevance can be identified. The way of highlighting the 
areas with the highest occurrence supports the detection of likely affected areas. The identified cells 
serve as indicators where visual inspection as well as VHR image analysis should be carried out in 
order to further explore the region.

For the characterization of the mining sites on a local scale, a transferable, flexible and easy to 
use algorithm was developed which was successfully tested on four different areas. The usability and 
reusability of rule sets showed the potential of inventorying and mapping mining sites. Difficulties 
are related to the similar spectral reflectance of features. However, this can be overcome by visual 
investigation, related to expert context information, which rendered satisfying results.

Conclusion and outlook

Current mining practices in conflict areas result in a disastrous humanitarian situation for miners 
and local population and have major socio-economic, environmental and political implications. The 

Table 5. accuracy assessment of the local analysis using GPS points.

Study area
Total number of GpS 

located sites number of verified sites
number of non-verified 

sites and explanation
Mumba-Bibatama 8 8 0
numbi 7 5 2

Mining sites could not be de-
tected; visual interpretation 

did not show any mining area
Bisie 4 1 3

Vegetation and cloud cover
tchonka 1 0 1

Vegetation cover
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study demonstrates the possibility of EO for supporting the monitoring and documentation of nat-
ural resource exploitation in conflict regions. On the three scales, land cover patterns and different 
features of interest could be observed in complex, remote and insecure landscapes and terrain. The 
information derived allows to detect conflict-related land cover changes over large areas and to locate 
and characterize mining sites, which otherwise would not be assessed. Not only can sites be detected, 
but one can even get an idea of the relevance of the detected sites in terms of mineral production, 
on the basis of the extent of the mining area. Together with local reports, field observations as well 
as political and economic assessments a more comprehensive picture about the complex situation 
in conflict regions can be provided as a basis for more confident decisions. This applies particularly 
for political planning at regional level but also concerning due diligence processes in the context of 
mineral certification and traceability.

The approach presented in this paper shows considerable potential of EO-based monitoring as a 
support tool for policy-making processes. It can be used to determine where intervention is required, 
for example, in rethinking the deployment of mining agents or the opening or closing of markets. 
Moreover, it allows the possible consequences of planned measures to be assessed. Further interest 
remains in testing the transferability of the developed methodology by applying it to different test 
sites within the DRC or even to other countries. Additional research potential lies in the integration 
of indicators which are considered to enhance both the quality of the outcome and the depth of 
information. Increasing activity in a mining area results in the expansion of settlements as miners are 
migrating. First attempts to use such indicators to enhance the accuracy of the results are currently 
under investigation.
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